

Kai earns $0,1,5$ or 10 points with each of the 3 darts thrown. We can think of this problem as Kai throwing 3 balls, each of which lands in one of 4 bins. Thinking of it this way allows us to use the stars and bars technique to find the total number of outcomes. We will use 3 stars to represent the 3 balls (or darts) and 3 bars as separators for the 4 bins (or point values). The total number of arrangements of 6 items, with 3 of one type (stars) and 3 of another (bars), is $6!/(3!\times 3!)=(6 \times 5 \times 4) /(3 \times 2 \times 1)=5 \times 4$ $=20$ arrangements. The table below shows all 20 outcomes of Kai throwing 3 darts and the total score for each outcome.

| $\mathbf{0}$ | 3 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| ---: |
| $\mathbf{0}$ | 0 | 1 | 0 | 0 | 2 | 0 | 0 | 1 | 1 | 0 | 3 | 0 | 0 | 2 | 2 | 1 | 1 | 0 | 0 | 1 | |
| $\mathbf{0}$ | $\mathbf{0}$ | 0 | 0 | 1 | 0 | 0 | 2 | 0 | 1 | 0 | 1 | 0 | 3 | 0 | 1 | 0 | 2 | 0 | 2 | 1 | 1 |
| $\mathbf{1 0}$ | 0 | 0 | 0 | 1 | 0 | 0 | 2 | 0 | 1 | 1 | 0 | 0 | 3 | 0 | 1 | 0 | 2 | 1 | 2 | 1 | |
| Total | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{5}$ | $\mathbf{1 0}$ | $\mathbf{2}$ | $\mathbf{1 0}$ | $\mathbf{2 0}$ | $\mathbf{6}$ | $\mathbf{1 1}$ | $\mathbf{1 5}$ | $\mathbf{3}$ | $\mathbf{1 5}$ | $\mathbf{3 0}$ | $\mathbf{7}$ | $\mathbf{1 2}$ | $\mathbf{1 1}$ | $\mathbf{2 1}$ | $\mathbf{2 0}$ | $\mathbf{2 5}$ | $\mathbf{1 6}$ | |

As shown, 4 of the totals occur twice. Excluding the duplicates, we see that Kai can get 20-4 = $\mathbf{1 6}$ different total scores.

